Offshore Wind farms and environment PhD Thierry Ruellet thierry.ruellet@gmail.com ### Time phases - Installation [High potential impact]: - Substrate - Turbid plume - Acoustic impact - Exploitation [Low potential impact]: - Sacrificial anode - Electromagnetic fields - Reef effect or FAD (Fish Aggregating Devices) ? - Dismantling? Low impact with floating wind turbines #### New substrate = faunal modification ### Turbid plume = faunal modification Biotic indexes used for the WFD (AMBI, BENTIX, ...) are based on the modification of the organic matter content \nearrow [Mud] = \nearrow [Organic Matter] = \nearrow opportunistic species & \searrow sensible species Table 1. Marine landscape types in UK waters, targeted by the aggregates sector. Wave base is 50 to 70 m. Tide stresses: weak = 0 to 1.8 N m⁻², moderate = 1.8 to 4.0 N m⁻², and strong is >4.0 N m⁻². UKCS: UK continental shelf (from Connor et al. 2006). Slope is negligible (<2%) for the shallow and shelf plain. Estuary has a strong salinity gradient from riverine inputs | Marine landscape type (depth)
Substratum | Tide stress
(currents) | Abbrev. | Area
(km²) | Prop. of
total UKCS | | |--|--|---------|---------------|------------------------|--| | Estuary (0 to 30 m) Mainly soft sediment, limited rock | Variable; moderate to strong in channels | ES | 2881 | 0.3 | | | * | variable; moderate to strong in channels | LB | 2001 | 0.5 | | | Shallow plain (coastline to wave base) | | | | | | | Coarse sediment | Weak | SCSW | 33 694 | 3.9 | | | | Moderate | SCSM | 16745 | 1.9 | | | | Strong | SCSS | 7869 | 0.9 | | | Mixed sediment | Moderate | SMSM | 2021 | 0.2 | | | Sand / muddy sand | Variable | SS | 48218 | 5.5 | | | Shelf plain (wave base to 200 m) | | | | | | | Coarse sediment | Moderate | SHCM | 17 433 | 2.0 | | | | Strong | SHCS | 2840 | 0.3 | | | Mixed sediment | Moderate | SHMM | 2260 | 0.3 | | | Sand / muddy sand | Variable | SHSP | 215 215 | 24.7 5 | | ### Acoustic impact: Marine mammals and fishes are sensible | Frequency | Group | Audibility | Threshold | |---------------------|---------------------|-------------------|--------------------| | ultrasonic | Dolphins, porpoises | 200 Hz to 200 kHz | 40 dB re 1μPa | | Ultrasonic to sonic | Seals | 1 kHz to 20 kHz | 50 dB re 1μPa | | Sonic to infrasonic | Whales | 15 Hz to 20 kHz | 60-80 dB re 1μPa ? | (Ketten, 1998) Pile driving can damage fish swim bladder and rupture internal organs, disorient the marine mammals over long distances ## Acoustic impact: Bubble curtains can be required to reduce noise ## Impressed current system has less impact acrificial anode 94 % Al 5 % Zn 0,12 % Si 0,09 % Fe 0,03 % In 0,003 % Cu 0,002 % Cd 39,5 t/yr disolved to protect a wind farm with 62 turbines Contamination of sediments, benthic organisms and fishes ### Electromagnetic fields - Effects are space limited - Behavioral and physiological effects (Öhman et al., 2007) - Well documented for fishes, elasmobranchs and marine mammals but few documented for benthic invertebrates, except for commercial species | Species | Common
name | Conservation status | Frequency
in Scottish
and UK
Waters | Evidence of response to E fields | Evidence of response to B fields | |-----------------------|---------------------------|-----------------------|--|----------------------------------|----------------------------------| | Anguilla anguilla | European eel | Critically Endangered | Common | √ 1,2 | √ 3,4 | | Salmo salar | Atlantic salmon | Least Concern | Common | √ 5,6 | √ 5,6 | | Salmo trutta | Sea trout | Least Concern | Occasional | | ✓7 | | Pleuronectes platessa | European plaice | Vulnerable | Common | √ 8 | √ 8 | | Thunnus albacares | Yellowfin tuna | Least Concern | Occasional | | √9-12 | | Lampetra fluviatilis | European river
lamprey | Near Threatened | Common | √ 13,14 | | | Petromyzon marinus | Sea lamprey | Least Concern | Occasional | √ 15-17 | | | | | | | | | ¹ Berge (1979); ² Vriens & Bretschneider (1979); ³ Enger *et al.* (1976); ⁴ Westerberg (1999); ⁵ Moore *et al.* (1990); ⁶ Rommel & McCleave (1973); ⁷ Formicki *et al.* (2004) – *juvenile fish*; ⁸ Metcalfe *et al.* (1993); ⁹ Kobayashi & Kirschvink (1995); ¹⁰ Walker *et al.* (1984); ¹¹ Walker (1984); ¹² Yano *et al.* (1997); ¹³ Gill *et al.* (2005); ¹⁴ Akeov & Muraveiko (1984); ¹⁴ Bodznick & Northcutt (1981); ¹⁵ Bodznick & Preston (1983); ¹⁶ Bowen *et al.* (2003); ¹⁷ Chung-Davidson *et al.* (2004) ### Reef effect or FAD?: Site by site study necessary ### Dismantling? The great unknow: How to dismantle? # Offshore Wind farms and environment PhD Thierry Ruellet thierry.ruellet@gmail.com